Before
start

ACCUMULA

ARITHMETIC &
| LOGIC UNIT
| (ALU)

Assembly Language

Addresses:

Program:

00 11010
01 10110
02 10100
03 10111
04 10000
05 01011
06 10111
07 11011
08 10110
09 11010
0A 11000
0B 00010
0C 11011
0D 11000
OE 10000
OF 00000
10 00000
11
12
13
14
15
16 01110
17 00101
18 00000
19
1A
1B
1C
1D
1E 10000
1F 00000

Again:

LOAD

cents

JLT

nickel

Done:

SUB

nickel

STOR

cents

LOAD

count

INC

STOR

count

JMP

Again:

Done:

HALT

cents

14

nickel

count

JMP

Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

Assembly Language

Addresses: Program:
&NV Y,
LOAD -———
00 11010 : Again: [I[LOAD |i
cents 01 H 10110 =:= ilcens |
02 10100 TICT— =7
03 1 10111 e nickel
04 10000 =:= Done:
05 01011 =) SUB
06 10111 nickel
¢«
ACCUMULAROR 07 11011 { STOR
08 H 10110 ::: cents
— S e 09 11010 LOAD
i o1t10 |! 0A 111000 ¢umb count
= 0B H 00010 =:= INC
0C 11011 STOR
0D H 11000 =:= count
_______ OE 10000 mq JMP
| ARITHMETIC & g OF 00000 = Again:
| Losic UNIT I 12 00000 - Done: HALT
| (ALU) I 5 0
L — — 13 -{
14)
¢
15
16 |H 01110 | cents | [14
17 00101 = nickel | [5
18 00000 — count | [0
19 —
1A
|
1B
1C -
1D -
|
1E 10000 — JMP
1F 00000 Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

JLT
nickel
Done:

ACCUMULANOR

01110

14 < 5
this is false so
no further
action is done

Assembly Language
Addresses: Program:
00 11010 Again: LOAD
01 10110 Lcents, o AL
02 10100 I{JILT U
03 10111 || nickel h
04 (H 10000 I[Done: i
05 01011 TSOB™ = T
06 10111 nickel
07 11011 STOR
08 10110 cents
09 11010 LOAD
0A 11000 count
0B 00010 INC
0C 11011 STOR
0D 11000 count
OE 10000 JMP
OF 00000 Again:
10 00000 Done: HALT
11
12
13
14
15
16 01110 cents 14
17 00101 nickel 5
18 00000 count 0
19
1A
1B
1C
1D
1E 10000 JMP
1F 00000 Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

Assembly Language
Addresses: Program:

SUB _
ickel 00 11010 Again: LOAD
Nicke 01 H 10110 cents

02 10100 JLT

03 10111 nickel

04 10000 JDane: o A

05 01011 IISuUB U

06 10111 1| nickel h
ACCUMULAJOR 07 11011 TSTOR = T

08 10110 cents

09 11010 LOAD

OA 11000 count

0B 00010 INC

oC 11011 STOR

oD 11000 count

OE 10000 JMP

OF 00000 Again:

10 00000 Done: HALT

11

12

13

14

15

16 01110 cents 14

17 00101 nickel 5

18 00000 count 0

19

1A

1B

1C

1D

1E 10000 JMP

1F 00000 Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

STOR -

cents

ACCUMULA

ARITHMETIC &
| LOGIC UNIT
| (ALU)

00 H 11010 l
01 H 10110 =:=
02 H 10100 =
03 H 10111 =
04 H 10000 =
05 H 01011 =)
06 H 10111 -
07 H 11011 -
08 H 10110 -
09 H 11010 -
0A H 11000 —
0B H 00010 =
oC H 11011 -
oD H 11000 -
OE H 10000 —
R OF H 00000 —
I 10 H 00000
. ¢
11
I B«
. 12
Y
13 H
Y
14 =)
15 = - = [
16 H{ 01001 |dmemy
17 |9~ O0T0T™ [
L
18 H 00000
L
19 H
1A -
|
1B
1C H -
1D H -
|
1E H 10000 =
1F H 00000

Assembly Language

Addresses:

Program:

Again:

LOAD

cents

JLT

nickel

Done:

SUB

Lnickel —

STOR

cents

[LOAD = 7

count

INC

STOR

count

JMP

Again:

Done:

HALT

cents

nickel

o1

count

JMP

Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

Assembly Language
Addresses: Program:
&NV Y,
LOAD
00 11010 l Again: | [LOAD
count 01 H 10110 =:= cents
02 10100 =) LT
03 10111 nickel
04 10000 =:= Done:
05 01011 =) SUB
06 10111 nickel
¢«

ACCUMULAROR 07 11011 -{= STOR
- S 09 11010 I|LOAD [
i 00000 |! 0A H 11000 ::: icount |
b e 0B 00010 TINC= = T

3G 1 11011 ldamd STOR
0D H 11000 =:= count
_______ OE 10000 =-> IMP
| ARITHMETIC & g OF 00000 = Again:
P —— I 10 00000 - Done: HALT
i (ALU) I 11 e
: 12
b — -{
13
¢
14
¢
15 =
16 01001 = cents 9
17 00101 nickel | [5
18 H 00000 |¢us) count | |0
19
1A -
|
1B
|
1C
|
1D —
1E 10000 — JMP
1F 00000 Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

1ETIC & |

Assembly Language

Addresses:

Program:

Again:

LOAD

cents

JLT

nickel

Done:

SUB

nickel

STOR

cents

LOAD

LcQul . o

INC

'ﬁm- -

count

JMP

Again:

Done:

HALT

cents

nickel

o1

count

JMP

Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

STOR -

count

ACCUMULA

ARITHMETIC &
| LOGIC UNIT
| (ALU)

00 H 11010 l
01 H 10110 =:=
02 H 10100 =
03 H 10111 =
04 H 10000 =
05 H 01011 =)
06 H 10111 -
07 H 11011 -
08 H 10110 -
09 H 11010 -
0A H 11000 —
0B H 00010 =
oC H 11011 -
oD H 11000 -
OE H 10000 —
R OF H 00000 —
I 10 H 00000
. ¢
11
I B«
Y
13 H
Y
14
Y
15 =)
16 H 01001 —
17 | 00101 gl
18 H{ 00001 |dmmm)
19 B = = ~ ==
I
1A
|
1B
|
1C H
|
1D H —
1E H 10000 =
1F H 00000

Assembly Language

Addresses:

Program:

Again:

LOAD

cents

JLT

nickel

Done:

SUB

nickel

STOR

cents

LOAD

count

NG e = L

STOR

count

[(JVMIP =

Again:

Done:

HALT

cents

nickel

o1

count

JMP

Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

JMP
Again:

ACCUMULA

ARITHMETIC &
LOGIC UNIT

(ALU)
OPCODE IN

Assembly
Addresses:

Language
Program:

00 11010
01 10110
02 10100
03 10111
04 10000
05 01011
06 10111
07 11011
08 10110
09 11010
0A 11000
0B 00010
0C 11011
0D 11000
OE 10000
OF 00000
10 00000
11
12
13
14
15
16 01001
17 00101
18 00001
19
1A
1B
1C
1D
1E 10000
1F 00000

Again:

LOAD

cents

JLT

nickel

Done:

SUB

nickel

STOR

cents

LOAD

count

INC

STOR

LCQURL —

JMP

Again:

Done:

HALT = 7

cents

nickel

o1

count

JMP

Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

Assembly Language

Addresses: Program:
&NV Y,
LOAD -———
00 11010 : Again: [I[LOAD |i
cents 01 H 10110 =:= ilcens |
02 10100 TICT— =7
03 1 10111 e nickel
04 10000 =:= Done:
05 01011 =) SUB
06 10111 nickel
7
ACCUMULATOR 07 11011 { STOR
08 H 10110 ::: cents
- 09 11010 LOAD
il ozo01 |! 0A 111000 ¢umb count
-¥F- 0B H 00010 =:= INC
0C 11011 STOR
0D H 11000 =:= count
_______ OE 10000 =) IMP
| ARITHMETIC & g OF 00000 = Again:
| Losic UNIT I 12 00000 - Done: HALT
| (ALU) I 0
: 12
L — — -{
13
14)
<
15
16 |H 01001 |¢mmp cents | |9
17 00101 — nickel | [5
18 00001 — count | [1
19 —
1A
|
1B
|
1C
|
1D =
1E 10000 — IJMP
1F 00000 Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

JLT
nickel
Done:

ACCUMULANOR

01001

9 < 5
this is false so
no further
action is done

Assembly Language
Addresses: Program:
00 11010 Again: LOAD
01 10110 Lcents, o AL
02 10100 I{JILT U
03 10111 || nickel h
04 (H 10000 I[Done: i
05 01011 TSOB™ = T
06 10111 nickel
07 11011 STOR
08 10110 cents
09 11010 LOAD
0A 11000 count
0B 00010 INC
0C 11011 STOR
0D 11000 count
OE 10000 JMP
OF 00000 Again:
10 00000 Done: HALT
11
12
13
14
15
16 01001 cents 9
17 00101 nickel 5
18 00001 count 1
19
1A
1B
1C
1D
1E 10000 JMP
1F 00000 Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

Assembly Language
Addresses: Program:

SUB _
ickel 00 11010 Again: LOAD
Nicke 01 H 10110 cents

02 10100 JLT

03 10111 nickel

04 10000 JDane: o A

05 01011 IISuUB U

06 10111 1| nickel h
ACCUMULAJOR 07 11011 TSTOR = T

08 10110 cents

09 11010 LOAD

OA 11000 count

0B 00010 INC

oC 11011 STOR

oD 11000 count

OE 10000 JMP

OF 00000 Again:

10 00000 Done: HALT

11

12

13

14

15

16 01001 cents 9

17 00101 nickel 5

18 00001 count 1

19

1A

1B

1C

1D

1E 10000 JMP

1F 00000 Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

STOR -

cents

ACCUMULA

ARITHMETIC &
| LOGIC UNIT
| (ALU)

00 H 11010 l
01 H 10110 =:=
02 H 10100 =
03 H 10111 =
04 H 10000 =
05 H 01011 =)
06 H 10111 -
07 H 11011 -
08 H 10110 -
09 H 11010 -
0A H 11000 —
0B H 00010 =
oC H 11011 -
oD H 11000 -
OE H 10000 —
R OF H 00000 —
I 10 H 00000
. ¢
11
I B«
. 12
Y
13 H
Y
14 =)
15 = - = [
16 H{ 00100 |demy
17 |9~ O0T0T™ [
L
18 H 00001
L
19 H
I
1A
|
1B
1C H -
1D H -
|
1E H 10000 =
1F H 00000

Assembly Language

Addresses:

Program:

Again:

LOAD

cents

JLT

nickel

Done:

SUB

Lnickel —

STOR

cents

[LOAD = 7

count

INC

STOR

count

JMP

Again:

Done:

HALT

cents

nickel

o1

count

JMP

Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

Assembly Language
Addresses: Program:
&NV Y,
LOAD
00 11010 l Again: | [LOAD
count 01 H 10110 =:= cents
02 10100 =) LT
03 10111 nickel
04 10000 =:= Done:
05 01011 =) SUB
06 10111 nickel
¢«
ACCUMULAROR 07 11011 { STOR
08 H 10110 ::: Jeans — 1
— S e 09 11010 I[LOAD |i
il o000z |! 0A H 11000 ::: ilcount i
b e 0B 00010 TINC= = T
3G 1 11011 ldamd STOR
0D H 11000 =:= count
_______ OE 10000 =-> IMP
| ARITHMETIC & g OF 00000 = Again:
P —— I 10 00000 - Done: HALT
i (ALU) I 11 e
: 12
b — -{
13
¢
14
¢
15 =
16 00100 = cents 4
17 00101 nickel | [5
18 H 00001 |¢ues) count | |1
19
1A -
|
1B
|
1C
|
1D —
1E 10000 — JMP
1F 00000 Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

1ETIC & |

Assembly Language

Addresses:

Program:

Again:

LOAD

cents

JLT

nickel

Done:

SUB

nickel

STOR

cents

LOAD

LcQul . o

INC

'ﬁm- -

count

JMP

Again:

Done:

HALT

cents

nickel

o1

count

JMP

Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

STOR -

count

ACCUMULA

ARITHMETIC &
| LOGIC UNIT
| (ALU)

00 H 11010 l
01 H 10110 =:=
02 H 10100 =)
03 H 10111 =
04 H 10000 =
05 H 01011 =)
06 H 10111 -
07 H 11011 -
08 H 10110 -
09 H 11010 -
0A H 11000 —
0B H 00010 =
0C H 11011 =
0D H 11000 =
OE H 10000 —
R OF H 00000 —
I 10 H 00000
. Y
11 H
I B«
Y
13 H
Y
14
Y
15 =)
16 H 00100 =
17 | 00101 gl
18 H{ 00010 |dmmy
19 H = = = |{a=
1A H -
1B -
1C -
covnT: B K2 D} -
' 1E H 10000 —
1F H 00000

Assembly Language

Addresses:

Program:

Again:

LOAD

cents

JLT

nickel

Done:

SUB

nickel

STOR

cents

LOAD

count

NG e = L

STOR

count

[(JVMIP =

Again:

Done:

HALT

cents

nickel

o1

count

JMP

Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

JMP
Again:

ACCUMULA

ARITHMETIC &
LOGIC UNIT

(ALU)
OPCODE IN

covnt: B X2

Assembly
Addresses:

Language
Program:

00 11010
01 10110
02 10100
03 10111
04 10000
05 01011
06 10111
07 11011
08 10110
09 11010
0A 11000
0B 00010
0C 11011
0D 11000
OE 10000
OF 00000
10 00000
11
12
13
14
15
16 00100
17 00101
18 00010
19
1A
1B
1C
1D
1E 10000
1F 00000

Again:

LOAD

cents

JLT

nickel

Done:

SUB

nickel

STOR

cents

LOAD

count

INC

STOR

LCQURL —

JMP

Again:

Done:

HALT = 7

cents

nickel

o1

count

JMP

Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

Assembly Language

Addresses: Program:
\ g
LoAD | (A ST e, [T T
gain:
cents 01 H o110 =:= cents |
02 10100 -{' TIET= =T
03 10111 -{' nickel
04 10000 -{' Done:
05 01011 -{' SUB
06 10111 -{' nickel
ACCUMULAROR 07 11011 -{' STOR
08 10110 -{' cents
- e | 09 11010 -{' LOAD
il 00100 0A 11000 -{' count
e 0B 00010 -{' INC
oC 11011 -{' STOR
oD 11000 -{' count
OE 10000 -{' JMP
....... 4 :
| ARITHMETIC & OF 00000 = Again:
| Losic UNIT I 12 00000 - Done: HALT
| (ALU) I <
- 12
e — -{
13
<
14 =
15
16 |H 00100 |¢mep cents | |4
17 00101 - nickel 5
18 00010 count 2
]
19
]
1A
L
1B
L
1C
ount: B K2 o -
C M ' 1E 10000 - JMP
1F 00000 Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

JLT
nickel
Done:

ACCUMULANOR

00100

4 < 5
this is true so
JMP is
executed

covnt: B XA

Assembly Language
Addresses: Program:
00 11010 Again: LOAD
01 10110 Lcents, o AL
02 10100 I{JILT U
03 10111 || nickel h
04 (H 10000 I[Done: i
05 01011 TSOB™ = T
06 10111 nickel
07 11011 STOR
08 10110 cents
09 11010 LOAD
0A 11000 count
0B 00010 INC
0C 11011 STOR
0D 11000 count
OE 10000 JMP
OF 00000 Again:
10 00000 Done: HALT
11
12
13
14
15
16 00100 cents 4
17 00101 nickel 5
18 00010 count 2
19
1A
1B
1C
1D
1E 10000 JMP
1F 00000 Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

HALT

ACCUMULA

ARITHMETIC &
| LOGIC UNIT
| (ALU)

covnt: B XA

Assembly Language

Addresses:

Program:

00 11010
01 10110
02 10100
03 10111
04 10000
05 01011
06 10111
07 11011
08 10110
09 11010
0A 11000
0B 00010
0C 11011
0D 11000
OE 10000
OF 00000
10 00000
11
12
13
14
15
16 00100
17 00101
18 00010
19
1A
1B
1C
1D
1E 10000
1F 00000

Again:

LOAD

cents

JLT

nickel

Done:

SUB

nickel

STOR

cents

LOAD

count

INC

STOR

count

JMP

LAgain: o L

Done:

HALT

cents

nickel

o1

count

JMP

Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘cents’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

After
HALT

ACCUMULA

ARITHMETIC &
| LOGIC UNIT
| (ALU)

HALT
Results in memory and on paper

“count of 2 nickels” and“4 cents remaining”

covnt: B X2

00 11010
01 10110
02 10100
03 10111
04 10000
05 01011
06 10111
07 11011
08 10110
09 11010
O0A 11000
0B 00010
0C 11011
oD 11000
OE 10000
OF 00000
10 00000
11
12
13
4
61 00100 |¢
1 OOTOT |
18 00010
19
MEM 1A
1B
1C
1D
1E 10000
1F 00000

Assembly Language
Addresses:

Program:

Again:

LOAD

cents

JLT

nickel

Done:

SUB

nickel

STOR

cents

LOAD

count

INC

STOR

count

JMP

LAgain: o L

Done:

HALT

cents

count

Y5 S

JMP

Again:

Explanation Hex
copy the value at ‘cents’ to the Accumulator 00
01
if the value at ‘nickel’ is less than the Accumulator then 02
jump to the address ‘Done’’ 03
04
subtract the value at ‘nickel’ from the Accumulator 05
and put the result back into the Accumulator 06
copy the value in the Accumulator to ‘cents’ 07
08
copy the value at address ‘count’ to the Accumulator 09
0A
add 1 to the Accumulator 0B
copy the value in the Accumulator to ‘count’ oC
oD
unconditional jump to the address ‘Again’’ OE
OF
stop the processor — end of program 10
11
12
13
14
15
variable -- the name ‘cents’ is the address and 14 is the value 16
variable -- the name ‘nickel’ is the address and 5 is the value 17
variable -- the name ‘count’ is the address and O is the value 18
19
1A
1B
1C
1D
unconditional jump to the address ‘Again:’ 1E
1F

Next Presentation:
Memory, ALU, and Control Circuitry

End of Presentation

